

EUROPEAN SOCIAL FUND

Subject: 17TEDV – Transport Theory

LO field – Logistics, Technology and Transport Management

Author: Ing. Dušan Teichmann, Ph.D.

PRAGUE & EU INVESTING IN YOUR FUTURE

Operational Programme Prague - Adaptability

Development of Master's Degree program N 3710 – "TECHNIQUE AND TECHNOLOGY IN TRANSPORT AND COMMUNICATIONS" within the introduction of teaching the concept of "Smart Cities"

CZ.2.17/3.1.00/36035

TABLE OF CONTENTS

Introductio	Dn	7
1	Basic knowledge in the area of optimization methods	10
1.1	Introduction to the issue	10
1.2	An overview of basic knowledge necessary for creating linear mathematical	
	models	19
2	Operation of selected segments of the transport networks	23
2.1	Introduction to the issue	23
2.2	Operation of the nodes of transport networks	23
2.2.1	Exact approaches – the Little's algorithm	26
2.2.2	Heuristic approaches	30
2.2.2	The method of the closest unvisited vertex	31
2.2.2.1	Clark-Wright method (CWM)	32
2.2.2.2	Operation of the sections of transport networks	35
2.5	Operation of the sections of Fulerian transport networks	36
2.3.1	Operation of the sections of non Eulerian transport networks	30
2.3.2	The design of signal plans for light controlled intersections	12
3	Introduction to the issue	42
5.1 2.2	Mathematical model design	42
5.2 2.2	Dreneratory store	43
3.3	Preparatory steps – a procedure for determining the phase sequence	47
3.3.1	Preparatory step 1 – creating the set of phases	4/
3.3.2	Preparatory step 2 – selecting the minimum number of phases	48
3.3.3	Preparatory step 3 – determining the optimal order of selected phases	49
4	Time coordination of connections	50
4.1	Introduction to the issue	50
4.2	Time coordination of connections in transit nodes	51
4.3	Time coordination of connections within common sections	56
4.3.1	The model for maximizing the minimum interval between two adjacent	-
1 2 2	connections	59
4.3.2	The model for minimizing the maximum between two adjacent connections	
		60
4.3.3	The model for minimizing the difference between the maximum interval	
	between two adjacent connections and the minimum interval between two	
	adjacent connections	62
4.3.4	Other possible approaches to solving the problem	64
5	The design of the network of public transport lines	65
5.1	Introduction to the issue	65
5.2	Mathematical model for minimizing the number of vehicles under conditions	
	of a homogeneous fleet	67
5.3	Mathematical model for maximizing the minimum relative reserve between	
	the offered and average required number of seats within sections under	
	conditions of a homogeneous fleet	68
5.4	Mathematical model for minimizing the number of vehicles under conditions	
	of a non-homogeneous fleet	70
5.5	Mathematical model for maximizing the minimum relative reserve between	
	the offered and average required number of seats within sections under	
	conditions of a non-homogeneous fleet	72
6	Optimization of vehicle circulation	74
6.1	Introduction to the issue	74

6.2	Categorization of vehicle circulation problems	75
6.3	Task variant I – optimization of vehicle circulation under conditions of a	
	homogeneous fleet without any possibility to change the time positions of	
<i>с</i> 1	connections	/6
6.4	homogeneous fleet with a possibility to change the time positions of a	
	connections	78
6.5	Task variant III – optimization of vehicle circulation under conditions of a non-homogeneous fleet without any possibility to change the time positions	
	of connections, with a full overlap between the subsets of connections	79
6.6	Task variant IV – optimization of vehicle circulation under conditions of a	
	non-homogeneous fleet without any possibility to change the time positions	
	of connections, with disjunctive subsets of connections	80
6.7	Task variant V – optimization of vehicle circulation under conditions of a	
	non- homogeneous fleet without any possibility to change the time positions	
	of connections, with a partial overlap between the subsets of connections	80
6.8	Task variant VI – optimization of vehicle circulation under conditions of a	
	non-homogeneous fleet with a possibility to change the time positions of	
	connections, with a full overlap between the subsets of connections	82
6.9	Task variant VII – optimization of vehicle circulation under conditions of a	
	non-homogeneous fleet with a possibility to change the time positions of	
	connections, with disjunctive subsets of connections	82
6.10	Task variant VIII – optimization of vehicle circulation under conditions of a	
	non-homogeneous fleet with a possibility to change the time positions of	~ ~
	connections, with a partial overlap between the subsets of connections	83
6.11	A simplified approach to vehicle circulation planning	84
7	The balance of cross-border transportation outputs	90
Conclusion	Conclusion	
List of liter	rature	94

Autor (editor): Ing. Dušan Teichmann, Ph.D.
Název díla: 17TEDV – Transport Theory
Vydalo: České vysoké učení technické v Praze, Fakulta dopravní
Kontaktní adresa: Konviktská 20, Praha 1, PSČ 110 00
Adresa tiskárny: ČVUT v Praze, Nakladatelství ČVUT, Zikova 4, Praha 6, PSČ 166 36
Počet stran: 96 Náklad: 100 Pořadí vydání: 1.

ISBN 978-80-01-05773-5